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SUMMARY

An appraisal is made of existing solutions of magnetohydrodynamic
boundary-layer equations for stagnation flow and flat-plate flow, and
some new solutions are given. Since an exact solution of the equations
of magnetohydrodynamics requires complicated simultaneous treatment of
the equations of fluid flow and of electromagnetism, certain simplifying
assumptions are generally introduced. The full implications of these
assumptions have not been brought out properly in several recent papers.
It is shown in the present report that for the particular law of defor-
mation which the magnetic lines are assumed to follow in these papers a
magnet situated inside the missile nose would not be able to take up any
drag forces; to do so it would have to be placed in the flow away from
the nose. It is also shown that for the assumption that potential flow
is maintained outside the boundary layer, the deformation of the magnetic
lines is restricted to small values. The literature contains serious
disagreements with regard to reductions in heat-transfer rates due to
magnetic action at the nose of a missile, and these disagreements are
shown to be mainly due to different interpretations of reentry conditions
rather than more complicated effects.

In the present paper the magnetohydrodynamic boundary-layer equation
1s also expressed 1n a simple form that is especially convenient for
physical interpretation. This is done by adapting methods to magnetic
forces which in the past have been used for forces due to gravitational
or centrifugal action. The simplified approach is used to develop some
new solutions of boundary-layer flow and to reinterpret certain solutions
existing in the literature. An asymptotic boundary-layer solution repre-
senting a fixed velocity profile and shear is found. Special emphasis is
put on estimating skin friction and heat-transfer rates.

INTRODUCTION

Several recent papers deal with reduction in skin friction and heat-
transfer rates due to the influence of magnetic fields on electrically



conducting flows along flat plates (ref. 1) and near stagnation points
(refs. 2 to 6). The reason for this strong interest is that the elec-
trical conductivities produced in the high-temperature region near the
nose of reentering blunt bodies appear sufficiently high to cause such
effects. This is especially so if the possibility of seeding the flow
with easily ionizable materials is considered.

Since an exact treatment of magnetohydrodynamic flows would reguire
a simultaneous solution of the equations of fluid motion and of the
electromagnetic equations, simplifying assumptions are generally intro-
duced. In the understandable rush to obtain numerical results the full
implications of these assumptions have not been properly brought out.
As a result, in some cases it is unclear which problem is actually
being solved and to what approximation the results are correct. An
attempt is made in this paper to clarify this situation. It seems also
that insufficient effort has been made to present the problems in a
form that lends 1tself most readily to physical interpretations of skin
friction and heat-transfer rates of a great variety of boundary-layer
flows. A simplified approach is developed in this paper to reinterpret
existing results from a novel viewpolnt and also to develop some new
solutions. For purposes of orientation, the problems treated are out-
lined in the following paragraphs.

In reference 1 the calculations for boundary-layer flows along flat
plates are simplified by assuming that the magnetic field induced by the
motion of the flow across the original magnetic field is small compared
with the originally imposed magnetic field. In references 2 and 4, which
deal with stagnation flow, the deformation of the magnetic lines due to
the induced magnetic effects is included in the considerations. Since
general solutions would be very hard to obtain, the simplifying assump-
tion is made that the deformation of the magnetic lines is restricted to
a particular law. Furthermore, the magnetic lines are subjected to an
especially simple boundary condition at the surface of the blunt body.

It is found in the present paper that for the particular deformsa.-
tion and boundary conditions of the magnetic lines, a magnet situated
in the blunt nose will not be able to take up any forces and thus its
field cannot offer resistance to the flow. On the contrary, the magnet
would have to be situated in the flow if it is to take up forces.

In reference 2 and in one example in reference L the additional
assumption is introduced that the stagnation flow outside the boundary
layer remains of the potential type even when deformation of the mag-
netic field is included in the considerations.

It is shown in the present paper, however, that for the particular
law of deformation chosen, the induced magnetic effects or the deforma-
tion of the lines must be small if potential flow is to be maintained



under action of the magnetic force. The results for the assumed
potential flow thus apply only to small induced effects or deformation
of the magnetic lines, contrary to what is implied by the numerical
analysis based on the complete equations that include the induced
effects. In the present paper another particular law of deformation

is pointed out which permits potential flow to exist for large defor-
mations of the magnetic lines. 1In contrast, it also is shown that the
assumption of small deformation of magnetic lines does not always guar-
antee the existence of potential flow under action of s magnetlic force.

The order of magnitude of the induced effects is governed by the
so-called magnetic Reynolds number RMy = ouUL, where o 1is the electri-

cal conductivity, u 1is the magnetic permeability, and U and I are
a velocity and a length characteristic of the given problem. The
manner in which the equations in reference 2 are made dimensionless
suggests that Ry 1s based on the boundary-layer thickness. The
information that the induced effects are small is thus actually
included in the equations of reference 2, but in such an indirect
manner that it is not immediately evident there.

Apparently a misinterpretation of the assumptions and results in
reference 2 has led to an attempt in reference 5 to make a numerical
comparison of the results for the shear based on the assumption of small
induced effects with those from reference 2 based on supposedly complete
induced effects. Such a comparison seems unnecessary since the assump-
tion of small jinduced effects is implicitly contained in reference 2.
The small difference of l/hOO between the results for the shears in
these two references is further evidence that the approaches are basi-~
cally the same.

In reference 6 the calculation of the reduction in heat-transfer
rate due to the magnetic field is based on the assumption of small
induced effects, and for reentry conditions a reduction of only 5 per-
cent was obtained as compared with 28 percent in reference 3. In ref-
erence 6 the boundary conditions at the shock ahead of the blunt body
are also included; for simplicity, both body and shock are assumed to
be spherical. In contrast, in reference % (based on ref. 2) the assump-
tion is made that the pressure distribution of the stagnation flow
remains constant and is independent of the magnetic-field strength.
This assumption is offered in reference 6 as the major reason for the
differences in results for the reduction in heat-transfer rates. It is
shown in the present paper that the difference can, however, be mainly
attributed to different numerical values of the magnetic parameter
UBEL/QH (where B 1is the magnetic induction and p the density).

The simplified approach to magnetohydrodynamic boundary-layer flows
is based on the assumption that potential flow is maintained outside the



boundary layer under action of the magnetic force. In that case the
pressure can be split into a dynamic and a magnetic part. This idea of
splitting the pressure is actually borrowed from approaches developed
in the past for flows subject to mechanical mass forces such as
gravitational or centrifugal force. The analysis of boundary-layer
flows is further simplified by dividing them into two major types. In
one type the pressure distribution (dynamic plus magnetic) is assumed
+o be constant and independent of the magnetic field; in the other, the
velocity distribution in the flow outside the boundary layer is assumed
to be constant. The second type has received only very brief treatment
in the literature.

SYMBOLS
— -
B, D magnetic induction
b scale factor
__)
B electric-field intensity
-3 e
H magnetic intensity, B/p
3 electric-current density
m magneti: puraneter, GBug/buP
Iy nagnetic paramnter, OBHEA«
v ragnetic vermeability
v kinematic viscosity
RM magnetic Reynolds number, poUL
¥ magnetic parameter, 1/uov
o) density
D pressure
o electrical conductivity

t time



velocity vector

u, Vv velocity components in x- and y-directions

X, ¥ Cartesian coordinates

U characteristic velocity

L characteristic length

e angle extended from body axis

r nose radius

Uy defined by u = xuN'(y) and v = —uN(y)

Subscripts:

D hydrodynamic

M magnetic

P potential

0 undisturbed stagnation flow

b along body

st stagnation point

u uniform

<~) dimensionless quantity; used only when designation is not
obvious

0 free stream

Superscripts:

(—3 vector

oy, (), () derivatives



EQUATION OF MOTION AND OHM'S LAW

For the steady flows under consideration, the equation of motion
with the inclusion of magnetic forces is

;'W=-%W+%(?XE3+VV2:+%WV-; (1)

Omm's law for fluid moving in a magnetic field is

-
w

3)= 0(§)+ x B) (2)

The two terms in the parentheses of equation (2) indicate that for the
interaction of a moving fluid with a magnetic field, essentially two
types of electromotive forces exist by means of which charges may be
separated and a closed current produced.

For simple flow analysis, those cases are of special interest in
which the motionally_}nduced electromotive force (represented by the

—
electric intensity w X B in eq. (2)) is alone responsible for current
closing, and the static electromotive force (represented by the electric

—)
intensity E) can be ignored.

Stagnation flow is one of the cases in which E’ can actually be
ignored for physical reasons. Because of the flow symmetry (the applied
magnetic field is assumed to be uniform) the motionally induced currents
on each side of the center plane or axis flow in opposite directions and
have exactly the same value. For axially symmetric stagnation flow the
currents simply flow in circles.

The boundary-layer flow along a flat plate does not have this
symmetry of stagnation flow. The currents thus require for closure an
outside wire connection. If this outside connection has a resistance,
work has to be performed in overcoming this resistance, which 1s made
possible through the existence of a static electromotive force (B % 0).
If the special artifice of a short-circuiting outside wire is used, the
existence of a static electromotive force is no longer necessary for
current flow. Due to the artificiality of this three-dimensional wire
connection caution is necessary in defining the two-dimensional
boundary-value problem.

For simplicity the condition E = 0 1is used in the magnetohydro-
dynamic boundary-layer equations throughout this paper. Ohm's law is



thus used in the form

-—
J

-
MAGNETIC-FIELD DEFORMATION

Mathematical Development and Solution
of Differential Equation

The induced current given by Ohm's law (eq. (5)) has a magnetic
field around it which is determined by Ampere's law

>
J

-VxE® (4)

_.)
where H represents the total magnetic intensity. It 1is convenient to
- =
express the magnetic induction B = uH in Omm's law in the form
- - - -
B, + b, where B, 1s the original imposed magnetic field and b the

induced field. The induced magnetic field, and thus the deformation of
the magnetic lines, can be obtained by equating the current from equa-
tions (3) and (4):

-

b = pow x (By + D) (5)

v X

If it is taken for granted that the original imposed magnetic field By
is produced only by currents flowing outside the fluid, Vv x B, 1is zero
and equation (5) can be written in the form
i -
V X B = po(w x §3 (6)
- =
or the equivalent form, with B = uH,

v X §,= pG(;’X ﬁ3 (7)

or in dimensionless form



v x B = Ry(y x B) (8)

The quantity Ry = woUL 1is the magnetic Reynolds number, a dimension-

less measure of the induced effects, and large values of Ry yield

large deformations of the magnetic lines. The velocity U and the
length L are characteristic of the particular problem under study.

In references 2 and 4 a particular solution of the differential
equation (8) for the deformation of the magnetic field is found by
postulating a law which the deformation is to follow. This law is

Hy = -h(y) Hy = xh'(y) (9)

According to equation (8) the actual deformation of the magnetic field
depends, also, on the velocity distribution. Since the velocity vector
appears in the equation of motion (1) as well as in equation (8), a
simultaneous solution of these two equations would be necessary to find
the actual deformation of the magnetic lines. Since this solution is
difficult to obtain, certain simplifying assumptions have been made for
the effect of the magnetic force on the velocity distribution. In the
subsequent development the designation ~ for dimensionless quantities
is omitted for convenience.

In reference 4 it is assumed that the veloeity distribution of the
viscous stagnation flow is of the form

u = xf'(y) v = -f(y) (10a)

In reference 2, the velocity distribution is of the same form but
expressed in different symbols, as follows:

U = xu'(y) vV = -u(y) (10b)

In the present paper the notation for the velocities in equation (10a)
is adopted. To avoild confusion between the symbol u as used in equa-
tions (10b) and in the present paper, the notation of equations (1Ob) is
changed herein to



u = xuy'(y) v=~uy(y) (10c)
For potential flow f' (or uN') is constant or unity so that
u = X and u = -y (11)

where the quantities are 1in dimensionless form.

It is shown in detail in the next section of the present paper
that the assumption of potential flow actually limits the deformation
of the magnetic lines to small values. The general trend of deformation
calculated in reference 4 on the basis of this simplifying assumption
seems, however, correct. This trend is verified in a subsequent section
of the present paper with the aid of physical reascning and 4 brief check
based on the equation for small deformation of magnetic lines. In fair-
ness it should be stated that in reference 4, in a subsequent nimericsi
development of boundary-layer flow for large Ry, the assumption of
potential flow is not used.

The deformation of the magnetic field is determined in reference 4
by substitution of the potential-flow velocity distribution {eqs. 11),
together with the postulated law of deformation of the magnetic lines
of equation (9), into equation (8). Egquation (8) is first written in
Cartesian coordinates:

OH, OH
SZX - g;é = Ry(uly - viy) (12)

Substitution of equations (9) and (10) into equation (12) yields

h" = Ry(f'h - h'f) (13)
or for potential flow, where f' =1,

h" = Ry(h - h'y) (132)

Equation (l}a) is solved in reference 4 subject to the boundary condi-
tions
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n(o) = -1 n'(0) =0 (14)

where (0) corresponds to conditions at the wall where y = 0. The
solution in reference 4 yields magnetic lines that, for large values of

RMy2, become tangent to the fluid streamlines as indicated in sketch (a),
which corresponds to figure 4 in reference L4 and is repeated here for
convenience.

‘—_"\
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* _Typical magnetic line
Q
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=
ey

—
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g % « .- Fluid streamline
8 e - -
S ~
o
+ \
w
e e -
jan

Distance along wall, xRMl/2
Sketch (a)

The trend of deformation of the magnetic lines is verified as
follows for the condition that the product h'y is small compared with
h. (This condition, which corresponds to small deformations, is shown
later to be required for existence of potential flow.) Equation (15)
is reduced to

h" - Ryb = 0 (15)

A solution of this equation subject to the boundary conditions at the
wall in equations (14) gives

h = -cosh Jﬁ&y ' (16)

and

h' = -ﬁg sinh Jﬁ;dy (17
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or, substituting from equation (9) for the Yy and x components of the
magnetic field,

H, = cosh Jﬁgy (18)

and

H, = —xlﬁg sinh Jﬁg& (19)

verification is thus obtained for the increasingly negative slope of the
magnetic lines.

Physical Interpretation of Deformation and
Effect on Location of Magnet

Perhaps the most important concept in the physical interpretation
of the results is that an electrically conducting flow more or less
drags the magnetic lines along. This concept is now applied to the
problem which is mathematically discussed in references 2 and 4. It is
assumed there that the magnetic field imposed for zero flow conditions
is normal to the plate and uniform, that is, the magnetic lines are
spaced equally (sketch (b)). Now, assume that the flow is started and
approaches steady stagnation flow near the blunt body nose. It is
evident that the magnetic lines will be dragged away from the line of

° etry (sketeh (c)). Magnet far above nose

™~

| LLﬁﬂ.ZJJ.u
| Deformed i

| magnetic

| lines . |

I

Uniform magnetic field

! 7/
Streamlinesi/z/,/ :
1. e l
|| s '
! - INose with p » w
I

TTTTTITTT] 77 77777777777 77777

Sketch (b) Sketch (c)

The boundary conditions for the magnetic field at the plate are given
in equations (14) as h(0) = -1 and h'(0) = 0. According to equa-
tions (9) this means that the normal component Hy is constant and the
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longitudinal component H, 1is zero. In other words, the boundary
conditions are that the magnetic field at the nose 1is uniform and
normal to the wall after its deformation to the steady state has taken
place. Sketch (c), based on the physical interpretation, evidently
agrees with the mathematical results of reference 4 presented in
sketch (a). Specifically, the concentration of the magnetic lines or
the increase in field strength in the direction away from the nose is
in agreement with the results in reference 4 expressed in the approxi-
mate form (necessary for potential flow) by equations (18) and (19).

The fact that the magnetic lines are bent inward and that the field
strength increases in the direction away from the plate in sketch (c)
raises the suspicion that the magnetic lines are not actually anchored
in the plate but in a magnet or coil located at a large distance
(approaching infinity) away from the plate. This is further evident
from the following physical consid-
erations. If the magnetic lines
were anchored in the plate the
plate would have to take up the
magnetic shear forces caused by
their deformation. Thus the
magnetic lines would sweep out-
ward, as shown in sketch (a).

It should be noted that in Streamlines<+" " L ]
sketch (d) it is assumed again o727 - Magnet in nose
that the magnetic field is origi- Sketch (d)

nally uniform and normal to the

nose; in contrast the magnetic lines are assumed to become normal to a
wall high above the nose as they are deformed. For the practical case
the original magnetic lines are of the form shown in sketch (e) and

the deformed magnetic lines in the

stagnation region will be swept

away by the flow without approaching Deformed

Wall vith p o

L LS /_/‘/_//T//

t/Original
magnetic
field

Deformed
magnetic )
lines —~

the vertical away from the nose. magnetic i Original
Whether a magnet situated in the lines\\ : magnetic
outside flow is practical is not field

discussed here except to note that
it could perhaps be useful for Streamlines”
establishing a magnetic drag skirt
if situated to the side of the
stagnation region. Naturally, a Sketeh (e)

magnet situated above the stagnation

region as in sketches (c¢) and (d) would block some of the flow; the
stagnation-flow streamlines are drawn only to illustrate the hypotheti-
cal problem presented in references 2 and 4.

Magnet

Finally, the physical meaning of the boundary conditions h'(0) =0
and h(0) = -1 in sketches (a), (b), (c), and (d) is discussed below.
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As mentioned previously, these boundary conditions signify that the
magnetic lines at the wall are normal and uniformly spaced. The condi-
tion that the magnetic lines are still normal to the nose after their
deformation means that the nose must have a magnetic permeability
approaching infinity, so that no resistance 1s offered to the motion of
the magnetic lines. The situation is analogous to having, say, & string
rigidly suspended at large distance from the nose but able to move
through the nose without resistance. As it is dragged away from its
point of suspension by the flow it will be displaced from its original
position at the nose, although the velocity at the nose is zero because
of friction. It seems evident that the stagnation flow would sweep
away the magnetic lines issuilng above the nose in such a manner that
thelr spacing normal to the nose is not uniform. The uniformity of
field strength is specified by the condition that, according to the
postulated deformation law (egs. (9)), the y-component of the magnetic
field is Hy = -n(y) and thus is solely a function of the y-coordinate

(normal to the plate). The infinite magnetic permeability of the plate
plays its part only in the sense that it offers no resistance to the
particular distribution of magnetic lines imposed on it and cannot exert
a force. For the law of deformation and the boundary conditions stated
in this section, the magnetic field at the nose is thus a result of the
interaction rather than being determined before the interaction.

If the high-permeability ncse were of finite dimensions so that the
displacement of the lines were resisted at its ends, a magnetic pressure
could build up 1n the flow direction. This situation furnishes an inter-
esting counterexample to the case in which the magnetic lines are
anchored in the plate by building up a magnetic shear in the direction
of the plate.

For purposes of illustration it is assumed that the magnetic pres-
sure in the flow where u 1is finite builds up in a one-dimensional man-
ner. Under such conditions the magnetic lines remain normal to the nose
as they can redistribute themselves freely in the high u nose, and the
law of magnetic-field deformation is

Hy = h(x) H =0 (20)

Again it is assumed that the flow is a potential stagnation flow; that
is,

u=x vV = -y (21)
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Substitution of equations (20) and (21) into equation (12) yields (in
dimensional form)

dH
?i;y = HUXH}/ (22)

for deformation of the magnetic field. Integration yields

uox2/2

H, = Hye (23)

The intensity of the magnetic field thus increases in the longitudinal
direction, and unless a finite plate representing the nose is considered
the lines are swept to infinity. (The deviations from one-dimensional
magnetic pressure due to end effects are neglected.) Since the magnetic
pressure depends on Hy alone, the equation for the pressure of the

stagnation flow is

Py - P = %(x2 + y2) + %Hyg (24)

or, after substitution of equation (23),

2
2 _pox
by, - P = 5(x2 + y2) + BH, %" (25)

where py 1s total pressure.

LIMITATIONS OF THE MAGNETIC-FIELD CONFIGURATION

DUE TO ASSUMPTION OF POTENTIAL FLOW

General Development

In view of the great simplification obtained for the normagnetic
case by dividing the flow into a viscous rotational boundary-layer
region and a nonviscous potential outside flow, it is desirable to
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state the conditions under which such a division is possible in the
magnetohydrodynamic case. For that purpose, the equation of motion (1)
1s rewritten in such a form that a distinction between potential, rota-
tional, and viscous flow is possible. Using the vector relations

w-W=V%2-?x (V x w)

and

vvaw_’=v(vv.»7’-vxvx»7')

gives

2
%(?xﬁ'ﬁ:v%-+%vp-»7xvx?+ WXVX?-%\»(W-?)

For potential flow,
- 2
%(,jxﬁ'}:v"'?+%v;> (26)

Equation (26) shows that if the velocity distribution is to have a

._.’
potential, (J X E3/p must be expressible as a gradient or the equiv-
alent condition
=
J X B _

> 0 (27)

vV X

must exist.

It is interesting to note that in order to satisfy the condition
of potential flow, the velocity term in equation (26) has to be kept
free of p, since potential flow refers to the potential of the velocity
rather than its product with p. As a consequence the condition for

votential flow requires that the curl of (E)X 53/0 be zero. Since
the induced currents produce Joule neat the density of the flow could
vary if compressibility effects were taken into account. It is evident
that the conditions for the existence of magneto-gas-dynamic potential
flow will be even more restrictive than those for magne tohydrodynamic
potential flow, where the density is assumed to be constant. The case
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of constant density is discussed in the present paper, rather than
special flows that include density variations. It can be also seen
from the relations at the beginning of this section that when the
magnetic force does not have a potential, the resulting curl would
have to be absorbed by the velocity field since it is capable of
rotational behavior while the scalar pressure field is not. The same
is also true in reverse - a rotational flow will produce a magnetic
force that is no longer derivable from a potential.

A few remarks concerning the terminology of potential flow under
action of magnetic forces would seem in order. The criticism has been
made that the word "potential" implies that the forces are part of a
conservative system, and since the currents produce Joule heat this
requirement of conservation is not satisfied. This definition of
potential may have been the first one historically, but in more recent
usage the existence of a potential depends on the fact that the curl
of the particular guantity, be it force or velocity, is zero. This is
immediately evident from the fact that the electric tank 1s used to
simulate potential flow, and in addition the very viscous Hele-Shaw
flow is used to simulate potential flow. Perhaps the most outstanding
example in this connection is the potential flow around & body with
moving walls to prevent boundary-layer formation (ref. 7). Thus the
conditions for potential flow are exactly fulfilled without the
necessity of using zero viscosity. DNote, especially, that the dissi-
pation function does not become zero when the curl of the velocity dis-
tribution is set equal to zero.

Application to Law of Deformation of Magnetic Lines
for Stagnation Flow

For constant-density flow the existence criterion given in equa-
tion (27) for potential flow can be written as

_)
vx (Fx3B) =0 (28)
The current density 5’ is expressed by Ampere's law:
e
d

VX E (29)

- =

where H = B/u. Substitution of equation (29) into equation (28) results
in
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v X [}v x 1) x ﬁj =0 (30)

Expressed in Cartesian coordinates, the existence criterion of equa-

tion (28) is
OH, OH } 3 OH, OH
o _J X 9 Y _ X -
Bx{%x<ax Sy ) ¥ By{%y<5x Sy )] © (31)

J
The law postulated in reference 2 for the deformation of the mag-
netic field is

Hy = xh'(y) Hy = -h(y) (32)

Note that the magnetic intensity H has a dimension, whereas in refer-
ence 2 it is used in dimensionless form; this does not affect the
derivation.

If the scale constant is equal to unity, the velocity distribution
for potential stagnation flow is

u =X V = -y (53)

Substitution of equations (32) for the magnetic-field deformation
into equation (31) for the existence criterion yields

3 fy SHx\ |3 fy OHy\ _
% ) - %(Hy )

or
a 2 n a "
=(x“h'h") - £-(hh"x) = 0
S0t - & ()
and
(hh")' - 2h'h" = 0
Finally,

hh™ - h'h" = 0 (34)
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For subsequent use, equation (34) is integrated, where the relation

hh" - h'h" (.h.) (35)
he

is used. According to equation (34), hh™ - h'h" = 0. Therefore

(ﬁ'l ) - 0 (36)

and with integration,
n" - Ch =0 (37)

where C 1s a constant.

Tt is important to note that a differential equation for h can be
obtained also by substitution of the magnetic transformation, equa-
tions (52), into the electromagnetic relation obtained by equating the

_)

current 3’ from Ampere's law, equation (29), with the current J from
Ohm's law, equation (2). Since for the stagnation flow the electric

—
intensity E = O is zero, the result is equation (8) (repeated here for
convenience):

T =V xE = Ry(w x H) (38)

Since the solution for the magnetic field ﬁ’ or the magnetic param-

eter h 1is unique, the differential equation obtained by substituting
equations (32) and (33) into equation (38) would have to agree with the
differential equation (37). The resulting differential equation is
already glven by equation (l}a), which is repeated here for convenience:

h" - Ryh + Ryh'y = 0 (39)

To justify the requirement that equations (37) and (39) be the same, C
must equal Ry and the product h'y must be negligibly small; that is,
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h" - Ryh(0) =0 (40)

Equation (40) is the same as equation (15) which was previocusly used to
analyze the deformation of the magnetic lines for small values of h'y.
The expression for h' obtained by integration of equation (15) is

h' = "RM sinh(Jﬁiy) according to equation (17). It can be seen that

even the use of small y values does not always guarantee small values
of h' and that Ry must also be restricted to small values if h'

is to approach zero.

The physical significance of this situation is found by recalling
that differentiation of equations (32) shows that h' = O, /ox = -aHx/ay.

Thus h' gives the changes in the x- and Yy-compenents of the magnetic
field. The restriction of Ry = ouUL  to small values can be accomplished

by keeping o, U, and L small individually or together if h' is to be
restricted to truly small values. The components Hy = h'x and Hy = -h

of the magnetic field are thus restricted to small deviations from their
values at the nose surface where Hy = 0 and Hy = -1, since the magnetic

lines are assumed to be perpendicular and uniformly spaced. This is
especially so if the characteristic length L and velocity U of the
flow region are small, so that the deviations are restricted to the
neighborhood of the stagnation point.

Order of Magnitude of Induced Magnetic Effects

due to Restriction of Potential Flow

It is shown in the preceding section that the induced effects in
reference 2 are restricted to small values because of the assumption of
potential flow outside the boundary layer. However, no explicit state-
ment is made there concerning this restriction; as a matter of fact,
the numerical analysis is based on the complete equations that include
the induced effects. A search was made, however, to determine whether
this restriction is contained in the simplifying assumptions used.

For that purpose it was necessary to determine how the magnetic
Reynolds number (egs. (4) to (8)), which is characteristic of the
induced effects, is defined in reference 2.

The clue to the magnitude of Ry = woUL  1is given by the manner in

which the significant quantities are made dimensionless. In equa-
tion (20) of reference 2, which gives the dimensionless representation
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of the magnetic-field deformation, the quantity 7 = l/pcv makes its
appearance. Further, the scale factor b of potential stagnation flow
is included in the dimensionless approach. The fact that the kinematic
viscosity v and b are used has a special meaning since the boundary-
layer thickness for stagnation flow is of the order of the constant

J;7gi Though RM is not directly defined in reference 2, it is evi-
dently of the form Ry = pdbLg, where L represents the boundary-layer
thickness (the scale constant b has the dimension l/t). The magni-
tude of Ry 1s evidently very small, since p = 4 X 10-7 volt—sec/amp-m

and v for high-temperature alr near the missile nose is, say,

lO"J+ me/sec, and the value for o 1s no higher than 250 ohms/m (appar—
ently seeding with easily ionizable materials is not considered). As a
result the induced effects will be small and the restrictive conditions
for potential flow outside the boundary layer are satisfied.

Jomparison of Calculations for Small Induced Effects
Made in Reference 5 With Results in Reference 2

In reference 5, results of calculations based on the assumption of
~51]1 induced effects are compared with results from reference 2. Such
a comparison seems unnecessary since reference 2 actually contains the
assumption of small induced effects, though in a hidden manner. The
small difference of l/hOO obtained in reference 5 between the shears
bused on machine computations and the calculations in reference 2 attest
to this fact; in principle the two approaches are actually the same.
The comparisen made in reference 5 of the results in the two papers for
a range of magnetic [orce parameters 0B2 ot showe very small differ-
ences; this is to be expected cince refarcunce & in cosence also assumes
small induced magnetic fields.

Limitations of Magnetic-Field Configurations for
Small Deformations of Magnetic Lines

So far the limitations due to potential flow have been discussed
only for large deformations of the magnetic lines. The fact that for the
particular deformation law used in reference 2 potential flow could be
shown to exist for small deformations does not mean that potential flow
always exists when deformations are small. Perhaps a better insight can
be obtained into this situation (which was previously discussed as the
limiting case for a particular deformation law) by rewriting the crite-
rion for incompressible potential flow (eq. (28)) in a different form.
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The result is

VX(JT’XE’):g-VE’-?-VE+]§)V 3)+5)V B=0 (41)
-
or, since Vv + j=v - B = 0:
Vx (FxB) =B .9 -7. =0 (42)

For the case of stagnation flow treated in references 2, 4, and 5,
- >
where s uniform magnetic field B, 1is imposed and the induced field b
— = -
is small, VB = V(Bu + 53 becomes VB,, which is zero, and the term

— — - —>
J + VB 1is also zero. (For the two-dimensional case j + VB is zero

even for arbitrary induced fields 6’ since the current is always normal
- -

to the plane in which the vector B = B,

shown that for the case of small deformations the current 5’ is a
function of x only. For the deformation law Hy = -h(y) ang
_)

—’
+ b acts.) Now, it can be

H, = xh'(y), the current j = v x H is, according to equation (13a),
(15), and (40), represented by h". According to equation (L40),

h" = Ryh(0)

where h{0) = —Hy is the original magnetic field. For the present

problem this equation serves only to indicate that the current depends
solely on the longitudinal or u-component of the velocity. According
to Ohm's law in the proper dimensions, the current is thus

3) = ou_)l?b (43)

Since for potential stagnation flow o is proportional to x, the
_,

current j 1is also proportional to x. Since the undeformed magnetic
-

field B, is normal to x, the dot product B, - AJ is zero. Thus
for this case substitution into equation (h2) shows that the condition
of potential flow is satisfied for the complete stagnation flow (as
far as the induced effects can be considered small), in agreement with
previous results. The inclusion of the boundary conditions behind the
shock of course introduces new problems.
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It is evident that the existence of potential flow is not, in
general, guaranteed for any complete flow pattern together with a more
or less arbitrary magnetic field, even if the deformations of the latter
are small. It should, however, generally be possible to maintain poten-
tial flow when the magnetic lines are normal to the flow and the curva-
ture of the streamlines is small. The restriction of the direction of
megnetic lines and the curvature of the streamlines is used in refer-
ence 1 for the somewhat different purpose of making the magnetic force
solely dependent on the longitudinal velocity. It is shown in a subse-
quent development of the present paper that the use of potential flow
outside the boundary layer simplifies the derivation of the boundary-
layer equations and helps very much in their physical interpretation.

A Finite Magnetic-Field Deformation Which is Valid
for the Complete Potential Stagnation Flow

A previous section contains a discussion of a magnetic-field con-
figuration where Hy = h(x) and Hy = O, that corresponds to a one-

dimensional magnetic pressure gradient along a finite plate or nose

— =
with high magnetic permeability. Since ¥J 1s perpendicular to B and
- -

VB is perpendicular to J, according to equation (42) the field will be
curl-free for finite deformations also. From the present discussion and

from previous comments, however, it is evident that the existence of
potential under finite deformation of the magnetic lines is the exception
rather than the rule.
Effect of Limitations due to Potential Flow on Equation of
Motion for Stagnation Flow
In equation (25) of reference 2 the equation of motion is presented

in the dimensionless form

2
U-Nm+ uNuN" _ (u')Ne + 1+ E_;(,O_) + (h|)2 _ hh" =0 ()4-)4‘)

This equation is used in reference 2 in conjunction with equation (20)
of that reference,

7h" + ugh' - ug'h = 0 (45)
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which also corresponds to equation (13) of the present paper for the
deformation of magnetic lines. Since for potential flow outside the
boundary layer yh' has to be small, and thus also u(y)h', inside
the boundary layer (where y and h' approach zero values at the
wall) equation (45) is reduced to

7h" - u'h = 0 (46)

Substituting equation (46) into the equation of motion (44) and using
the previously shown condition that h' itself is small glves

2
uNm+ uNuN" _ (uN')g + 1 + h_'le(l -u') =0 (47)

This equation of motion for magnetohydrodynamic boundary-layer
flow is in agreement with the boundary-layer equation developed in a
subsequent section specifically for small deformations of the magnetic

lines (eq. (5%)).
SIMPLIFIED ANALYSIS OF BOUNDARY-LAYER FLOW

For the potential flow outside the boundary layer the equation of
motion can be written in the form of equation (26), which is repeated
here for convenience:

- o 2
%(JxB)=VW?+

El

If the magnetic forece has a potential, it is possible to use
simplifying techniques developed long ago for mechanical forces having
a potential, such as gravitation or centrifugal force. For example,
in reference 8 (pp. 115-116) it is shown that for flow subject to a
gravitational force the pressure can be split into two parts, one due
to dynamic action and a static gravitational pressure due to the

weight of the fluid defined as

Pgr

Pgyr = -pgh + Constant (48)
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It is also stated that this simplification cannot be applied to com-
pressible flows because the changes in density affect both static and
dynamic action. A detailed discussion in reference 8 shows that the
combined pressure consisting of the dynamic and the static gravitational
parts must satisfy the boundary conditions, for example, at a free
surface.

In an analogous manner, the pressure can be split for the case of
magnetic forces that have a potential. Equation (26) becames

— 2
L% B) = ¥+ J(py + py) (49)

where the magnetic-pressure gradient is now balanced by the magnetic
force, or

-
J

x B = vp, (50)

It is perhaps of interest to note that, in contrast to the gravita-
tional pressure (eq. (49)), the magnetic pressure (eq. (50)) does not
depend on the density. However, it was shown in a previous section (see
eq. (27) and following material) that the existence of a magnetic force
potential would be an extremely rare occurrence if compressibllity were
accounted for, since the Joule heat produces density variations. Thus
the simplicity of equation (50) alone is not enough to permit pressure
splitting for compressible flow.

It was shown previously that the maintenance of potential flow out-
side the boundary layer is, in most cases, possible only when the deforma-
tion of the magnetic lines is small, but that even for this situation
potential fiow need not always exist. The fact was also brought out
that potential flow should be possible when the magnetic lines are
normal to the flow and the curvature of the streamlines is small. Under
such conditions

TxB=o[BE. % -wE - b (51)

becomes

2
LPxd) = - 2o @ (52)
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The above conditions are also specified in reference 1, but without
mention of the fact that with them the simplifications of magnetohydrody-
namic potential flow are introduced.

With the above conditions the magnetohydrodynamic boundary-layer
equation can be written in the form

du, yu, 13 _ D
T oy T o (Pt R 52 (53)
where
2
oBu
ml = D

In the potential flow outside the boundary layer the magnetic force is
balanced by the magnetic pressure gradient, or

l apb,! V.
= —2 + mup =0 S
o ox 1P 7

Equation (55) without the magnetic terms i1s the conventicnal boundary-
layer equation. It is usually assumed that the pressure gradient
dpy/0x acts uniformly across the boundary layer. An alternat~ form of
the equations can be obtained by replacing (apM/ax»/p with -mjup

from equation (S4) in equation (53), with the result

op 2
Lou + V§B + L Dy m (4 - up) = vé—E (55)

ox dy 0 ox 3y2

It is immediately evident that equation (55) is of the same form
as equation (h7), which was obtained by limiting the approach in
reference 2 to small deformation of the magnetic lines:

uNm + uNuNn _ (qu)2 + 1 + D_%Q_).(l - U.N') =0 (56)
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For comparison, equation (55) is regrouped:

u _ du _ du_1%p Sy -
VS;E vay uax S Sx +m(up - u) =0 (57)

In comparing equations (56) and (57) it must be realized that equa-
tion (56) is written in dimensionless form while equation (57) is not.

The dimensionless parameter he(O)/y used in references 2 and 3, how-
ever, agrees in essence with the dimensionless expression mx obtained
by multiplying m) by x and dividing by u, whereby

0B,°
mX’-:—D—u—X
or, for stagnation flow where u = bx,
oB,°
mx = —2
pb

In the following paragraphs the general scope of the problem is
outlined. A more specific analysis of a few selected cases is given in
the appendix with the aid of the split-pressure approach. Basic trends
in skin friction and heat-transfer rates are also discussed there.

It appears convenient to divide the great variety of boundary-layer
flows 1nto two main types. For one the distribution of the pressure
(hydrodynamic plus magnetic) is assumed to be constant, whereas for the
other the velocity distribution in the potential flow outside the
boundary layer is assumed to be constant and independent of the magnetic-
field strength. The value of such a classification depends on whether
these types, singly or in a combined form, lead to physically realizable
boundary conditions. For example, for the boundary-layer flow along a
flat plate it should be possible to maintain constant pressure independ-
ently of the field strength, if certain conditions are satisfied. If s
magnetic field extending a finite distance above the plate and the
resulting changes in the flow direction are considered small (generally
necessary for potential flow), it should be possible to transmit a con-
stant pressure to the plate. Another example in which the assumption of
constant pressure distributions has been used is that of stagnation flow
behind the bow wave of a blunt body in hypersonic flow (ref. 2). While,
as shown in reference 6, the assumption of constant pressure distribution
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is not exact, it is shown in a subsequent section that the assumption
provides a valuable approximation.

When the velocity distribution of the potential flow is maintained
independently at the magnetic-field strength, the boundary-layer flow
requires a magnetic pressure gradient that balances the magnetic force.
The maintenance of the veloclty distribution may require the obvious
boundary condition of s pump, or may arlse indirectly from more
involved boundary conditions. In the literature (ref. 1) this type of
problem has been treated only for the case in which s given initial
flow acceleration outside the boundary layer is maintained against g
me.gnetic force. The case in which the velocity distribution of the
potential flow is maintained is also of interest for certain aspects
of stagnation flow. Details are given in the appendix.

In one case, the maintenance of a velocity distribution results in
the rare situation of a boundary layer that approaches a fixed velocity
profile (and fixed shear) in an asymptotic manner. This happens when
a constant velocity is maintained in the potential flow outside the
boundary layer. The equations for this and the previously mentioned
problems are given in the appendix.

REASONS FOR DIFFERENCES IN RESULTS FOR REDUCTION

IN HEAT-TRANSFER RATES

As noted in the introduction, the reduction in heat-transfer rates
(and skin friction) due to the magnetic field is given as 28 percent in
reference 3, whereas in reference 6 a reduction of only 5 percent is
obtained (in both papers the induced effects are small). The dif-
ference is ascribed in reference 6 to the simplifying assumption made
in reference 3 (based on ref. 2) that the pressure distribution in the
flow behind the bow wave is maintained independently of the magnetic-
field strength. In reference 6, where the proper boundary conditions
at the shock are used (for a spherical shock corresponding to a
spherical body) it is implied that the difference in reduction of heat-
transfer rates is mainly based on the inadequacy of the assumption of
constant pressure distribution. However, it is shown below, by substi-
tuting values for reentry conditions into the equations used in that
paper, that the differences in the results are in the main due to a
different choice in magnetic parameter rather than due to the assump-
tion concerning the pressure distribution.

According to equation (13) of reference 6, the pressure variation
in the incompressible flow near the stagnation point is given by
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Pp = Pgt =7

ol

(} - %Sb)(l + %)sinze (58)

The parameters Sy and A are defined by

UBbrb

Pooteo

(59)

Sy =

and

0By

- 6
? p(ave;aB)st ( O)

where (ave/ae)st represents the veloclty distribution near the stagna-

tion point and is given by equation (12b) of reference 6:

3"6) _[s 1. |12 |
(5, [t -] o

with k = Om/o. It is stated in reference 6 that A corresponds to the
parameter used in references 2 and 4. If this were true A would have
to be dimensionless, but according to equation (61) Jvg/® does not

have the dimension velocity/length which would be necessary to make A
dimensionless. To judge from the development in reference 6, A\ should
apparently be divided by e and multiplied by 1, or

oB,?  oBPry (62)

A =
Bu) ( 8v>
(S &~ uco
(ax st S

The quantity Sy 1s assumed to be given, since By 1is assumed not

to vary during the interaction; Iy and © are known, as well as p

o
and u corresponding to the conditions ahead of the shock. The param-
eter A for the stagnation region was to be calculated. For the present
purpose it is most convenient to establish the ratio of S, and A.
According to equations (59) and (62), with k =o_ /0,



ou 1/2 - 1/2
E_E_ié‘h( 1 ) / _ Qﬂ(l-_s> / (63)
N Pwte  Pu |3 P ¥ P 3 b\ kP

Ty

In reference 6 the assumption is made that for rentry conditions S
2/5 and the density ratio p/poo is about 15. Substitution of these
values into equation (63) gives Spy/N = 5.7T.

This value for sb/x is used in calculating the deviation from the

conditicn of constant pressure distribution by means of equation (58).
Since without the magnetic field the pressure distribution is

Pp - Pgt =-% sin29

the relative deviation from the pressure difference that would exist
without the magnetic field is

Ap = A(} - lsb) - %sb (64)

When Sy = 2/5 and Sb/% = 5.77, 4&p 1is only 0.07. To make

certain that this small relative deviation of the pressure is not Just
accidental, slightly higher values of Sy (say Sy = 1) were investi-

gated (Sy, = 2/3 1is perhaps a little conservative for reentry condi-
b

tions); some smaller values of p/p ~ were also used, with the result

that the relative pressure deviations still remained small. Further-
more, the value of A\ was verified by using the "modified Newtonian
theory" for the value of (Bu/Bx)st without the magnetic field:

Small values for Ap were again obtained.

The smallness of the deviations seems further plausible in view of
the fact that Ap goes through zero for the range of values of Sy, and
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sb/x investigated (see also physical interpretation in the appendix).

Specifically, for the assumed case of constant pressure distribution
(&p = 0), equation (6L4) yields a value of 5 for Sp/N when Sy = 2/3.

Evidently A 1in reference 6 is equivalent to the significant
parameter hg(O)/y in reference 3, since both refer to conditions near

the stagnation point. For Sy = % and Sb/h =5, A= 21 EL. This

value for A 1s to be compared with the value for h2(0)/7 = 0B2/pb

in reference 3, which is 4.9. It is evident from figure 1 in reference 3
that the high reduction in heat-transfer rate is essentially due to the
extreme values of the magnetic parameter, which would correspond to
reentry conditions at altitudes higher (smallery p) than that at which
the maximum heating rate occurs, unless seeding with easily ionizable
materials (higher o) is considered. For a more realistic value of

h2(0)/7 or A the reductions in heat-transfer rates obtained in ref-
erences 3 and 6 should approximately agree.

REMARKS ON PRACTICAL APPLICATION OF MAGNETIC FIELDS

TO REENTRY PROBLEM

In addition to producing a reduction in heat-transfer rates, the
magnetic field has the function of increasing the drag. The resulting
deceleration decreases the total heat transfer to the missile (ref. g).
It seems gclear from the previous section that the application of a
magnetic field near the nose will not yield sufflclently large effects
unless seeding with easily ionizable materials or some other means of
boosting the electric conductivity 1s considered. Effects due to vari-
able conductivity are not considered here. Actually, since the drag
due to the magnetic force is proportional to the velocity, it could have
been more or less expected that attempts to obtain drag increase in the
low~velocity region near the nose would not be successful.

The use of magnetic drag skirts at some distance from the nose
looks more promising. Such drag skirts could also reduce the velocities,
skin friction, and heat-transfer rates near the nose in a menner similar
to that of a blunt body with a concave nose. Lift control through
magnetic fields also offers an interesting possibility. In this connec-
tion the effects of a magnetic field due to a thin solenoid extended
into the flow (ref. 10) are of interest.
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CONCLUSIONS

1. The law of deformation of the magnetic lines assumed in some of
the existing literature on magnetohydrodynamic stagnation flow corre-
sponds to magnetic lines which diverge as they approach the missile nose.
The magnetic lines are dragged along by an electrically conducting flow.
If this condition is to hold true the magnetic lines must have roots in
a magnet situated away from the nose rather than one in the nose. The
drag forces are taken up by this magnet situated away from the nose, or,
in other words, the magnetic field is not assigned at the nose but is a
result of the interaction. The boundary conditions specified in this
literature, that the magnetic lines are equally spaced at the missile
nose and normal to it, reinforce these conclusions. Their fulfillment
requires that the magnetic permeability of the nose approach infinite
values and thus offer no resistance to the displacement of magnetic
lines.

2. For the magnetic deformation law and the boundary conditions
stated in conclusion 1, the assumption that potential flow is maintained
outside the boundary layer is a good approximation only if the induced
magnetic effects or the deformation of the magnetic lines is negligibly
small. This conclusion is contrary to the implications of the numerical
analysis in reference 2 which is based on the complete equations that
include the induced effects. However, the magnetic Reynolds number
Ry = ouUL which is representative of the induced effects is implicitly
based on the boundary-layer thickness; thus the results in reference 2
are actually restricted to small induced effects.

3. The comparison of the calculations for small induced effects in
reference 5 with those for supposed full induced effects seems unneces-
sary, since the restriction to small induced effects is implicitly con-
tained in reference 2. This is also brought out by the fact that the
results for the shears in the two references differ by only 1/400.

L. A law of deformation of the magnetic lines exists for which
potential flow is maintained when induced effects are large.

) 5. The restriction to small induced magnetic effects does not always
guarantee the existence of potential flow under action of a magnetic
force.

6. The reduction in heat-transfer rates (and skin friction) due to
the magnetic field is given as 28 percent in reference 3, whereas in
reference 6 a reduction of only 5 percent is obtained. The difference
is ascribed in reference 6 to the simplifying assumption made in refer-
ence 3 that the pressure distribution behind the bow wave is maintained



independently of the magnetic-field strength. However, it is shown in
the present paper that the major reason for the differences in heat-
transfer rates is a different choice of a magnetic parameter that
depends on reentry conditions. The reentry conditions used in refer-
ence 6 are in better correspondence with the maximum heat-transfer
rates which are to be reduced by the masgnetic field.

7. For potential flow outside the boundary layer the pressure can
be split into a magnetic and a dynamic part. This splitting leads to
considerable simplification in the presentation of magne tohydrodynamic
boundary-layer effects.

8. The division of boundary-layer flows into two types, where the
pressure or the velocity distribution in the potential flow 1s maintained
independently of the field strength, leads to a useful classification.

9. For the case of constant pressure distribution, shear and heat-
transfer rates are reduced, whereas for the case of constant velocity
distribution, they are increased.

10. A comparison of the magnetic force effects with the better known
effects of pressure gradients shows that the decreases and increases in
shear and heat-transfer rates are smaller for the magnetic case.

11. For flow along a flat plate with constant velocity maintained
under action of a magnetic force, a rare case occurs in which the velocity
profile of the boundary layer approaches asymptotically a fixed shape and
the shear approaches a fixed value.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., December 30, 1958.
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APPENDIX

APPLICATION OF THE SIMPLIFIED APPROACH TO A VARIETY OF

MAGNETOHYDRODYNAMIC BOUNDARY-LAYER FLOWS

General Remarks

It is shown in the body of the paper that for potential flow out-
side the boundary layer the equations can be presented in the simplified

form (eq. (53)):

u QU . v ou + % Q_(pD + pM) + mu = v QEE (AL)

ax ay ox ay2

The magnetic force mup 1s held in balance by the pressure gradient
apM/Bx according to equation (54):

Equations (Al) and (A2) can be combined to yleld the alternate form

3 S 1 Opp 32
ua_;1+v$+ag-+ml(u-up)=v§y—g (A})

The problems arising from the somewhat artificial nature of the
two-dimensional boundary conditions, especially for the magnetic field,
are not discussed here.

Boundary Layer Along a Flat Plate

With pressure distribution maintained.- The assumption that the zero
pressure gradient is maintained independently of the magnetic-field
strength is conveniently substituted into equation (Al). As a result,
the equation reduces to

w Yoy Qu mu = v Ry (AL)

ox dy dy*©
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The boundary condition in the potential flow, where (according to

2
the usual boundary-layer assumption) v 9%u and Vv %B approach zero, is
dy? Y
u _aﬁ = - mlu (A5)

X

The split-pressure approach is advantageous in that 1t shows that
both the hydrodynamic and the magnetic pressure gradient can vary, since

%;CPD + pM) =0 (A6)

Equation (A4) is similar in structure with the well-known equation for
boundary-layer flow under unfavorable pressure gradlent. The essential
difference is that the pressure gradient acts uniformly across the
boundary layer, whereas the magnetic force mju decreases with the

reduction of the velocity toward the wall.

In this connection 1t should be pointed out that the velocity pro-
file in sketch (f) of reference 1 which has negative velocities, or
reverse flow, 1s not correct since the magnetic force approaches zero
at the wall and, in addition, the smoothing effect of the viscosity is
important. As an increasing amount of boundary-layer material approaches
zero speed, continuity requires that the flow be lifted from the wall,
but reverse flow cannot occur.

It is also evident from the structure of the magnetic force that
the reduction in skin friction will be less than that for the corre-
sponding pressure gradlent. Estimates of skin-friction reduction due
to the magnetic force could be developed on this basis.

A simple comparison of the reduction in heat-transfer rates for the
two cases 1s also possible through the comparative deviations from the

Reynolds analogy when the static electric intensity ﬁ’ is zero. The
reason 1s that under such conditions the total energy (including Joule
heating) is constant under the action of the magnetic force. The con-
stancy of total energy under these conditions has been derived in sev-
eral papers (refs. 1, 11, 12, and 13). Since the deviations from the
Reynolds analogy for the cases of pressure gradlents are well established
for conditions of constant total energy (ref. 1), the corresponding
trend for the magnetic case can be readily established. Like the reduc-
tion in skin friction, the reduction in heat-transfer rates can be
expected to be less for the magnetic case than for the corresponding
pressure-gradient case.
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With steady velocity distribution maintained in the potential flow.-
For the case in which steady velocity distribution is maintained in the
potential flow, it is convenient to use equation (A3). As y =« and
u —up the potential-flow boundary condition 1s

aup prD_
e i T ° (A7)

since the terms VP(BuP/ay) and v(azup/5y2> are zero. In order to
apply the %oundary condition of equation (A7) to equation (AB), the latter
is rewritten, using u(du/dx) = 6<u2/2)/6x, in the following form:

AT upz) d uP‘?) 1 9pp du ) Loy 9Fu A8
=z ’“(’2_ PR e T “P)‘”aye (AE)

Q/

Up< | o
where, according to equation (A7), jlﬂ_ﬁ_) + % D g equal to zero.
X\ 2 X

For a given potential-flow velocity distribution the steady-flow
equation thus becomes, with use of the boundary conditions,

r o - > R
@_&u_)_ -2—;%—) + v -g—y]‘i + ml(u - up) _ v S°u (A9)

For a flat plate when the potential-flow velocity is held conctant (that
is, B(uP2/2)/5x = O) equation (A9) reduces to

2
u ou v 95 + ml(u - uP) -y 9 (AL0)

ox oy dy°

It is agaln of interest to compare the magnetic-force term
ml<u - up) with a pressure gradient. Since wup > u, the magnetic-

force term corresponds to a favorable pressure gradient. This corre-
spondence is evidently due to the fact that when the velocity distri-
bution is assumed to be constant the magnetic pressure gradient which
balances the magnetic force -mju has to "drag" the flow along. The

effect of the magnetic force ml<u - up) on the shear increase is evi-

dently smaller than the effect of a corresponding pressure gradient.

As a matter of fact, the magnetic force 1s even zero in the potential
flow but increases toward the wall. However, as the wall iIs approached
the retarding effects of the viscosity oppose the trend toward increase
in ou/dy and the shear.
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For the flat-plate boundary layer with a constant velocity, it can
be shown that a constant shear (and velocity distribution) is asymptoti-
cally approached. The reason is that the shear diminishes for the flat-
plate boundary layer without a magnetic field, whereas the magnetic force
acts similarly to a favorable pressure gradient In increasing the shear.
An equilibrium state is attained given by

&u

(A11)
8y2

m]_(u - U.P) =V
-

With the application of the boundary conditions that u -0 as
y -0 and u —>up as y —=, the solution of equation (A11l) is

u = up(l - e@y) (A12)

which represents the shape of the asymptotic velocity profile.

With an initial acceleration maintained in the potential flow.-
Reference 1 treats the case in which an initial acceleration is main-
tained in the potential flow, but in a perhaps less direct manner than
the present split-pressure approach. For the initial acceleration the
unsteady term oOu/dt has to be included in equation (A3) but the
inertia terms u(ou/ox) and v(du/dy) can be neglected. As a result,
equation (A3) becomes

du, 19D Sy = v Pu AL
ot 7 ax ml(u uP) ’ Byg (813)

For potential flow outside the boundary layer where y —-ys, u -up,
and v(azu/5y2> = 0,

Sup 1 9Pp
ox

5 (ALk)

i
P
and the pressure gradient (épM/ax)/p is balanced by the magnetic force
-10) Up according to equation (A2). In order to apply the boundary con-
dition of equation (AlkL) to equation (Al3), the term auP/Bt is con-
viently subtracted and added to give
du _ %up  Oup 1 Opp

pralelibes + 5 550 + ml(u - uP) =v = (A15)
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du o
where, according to equation (Alh), 5%2 + % SED is equal to zero.
X

Since up is a function of time only, J2ufdy° can be written as

52(u - uP)/8y2 and thus equation (Al5) becomes

2
ofu - up) | m (u - up) = v O"(u - up) (A16)

ot dy2

If the relative velocity u - up 1s designated as Au, equation (Al6)

seems to agree with the initial stages of boundary-layer flow over an
accelerated flat plate when the magnetic field is fixed in the fluid
(a case treated in ref. 1). This agreement is mentioned also at the
bottom of page 20 of reference 1. Equation (Al3) of the present paper
agrees with the third equation on page 20 in reference 1, which is
stated but not derived. The fourth equation on page 20 states that

when y = o, Ju/dt = Bzu/ayg =u = 0. According to equation (Al6) of
the present paper, however, this condition would apply when (u - uP)

or /M becomes zero. The last equatlon on page 20 of reference 1 states

that at y = o, -m) U + >~ < 0 vwhere the subscript o« seems identical

with the P wused in the present paper for potential flow. This state-
ment in reference 1 seems in contrast with the fourth equation of page 20
(ref. 1), where u 1is zero at y = w.
Boundary-Layer Flow Near a Stagnation Point
In reference 2 the boundary-layer equation is solved under the

assumption that the pressure distribution is maintained under action of
the magnetic force. Since for stagnation flow a pressure distribution

P
(pt - p)D’O = § b02X (Al7)
exists without the magnetic field, a pressure gradient

L(@) = -b02X
P\IX /o

has to be maintained rather than the zero pressure gradient of flat-
plate flow. Thus
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d o J
1 pD) = -by%x = L Pp o, 1PM (A18)
P\Ix /4 P ox f ox
where, according to equation (A2),
op
1 M

The new hydrodynamic pressure gradlent is adjusted to the change
in scale of the potential stagnation flow from b, to b, that is, the

gradlient becomes
£ apD = -b2x
o x
The magnetic pressure gradient (BpM/Bx)/p = -mjup undergoes a similar
scale adjustment. In detall, since mj = UBuz/O and up = bx, muUp

can be written in a more convenient form:

2 2
B2 By

2
mjup = up = bex (A19)
14YP o P b

Equation (A18) can thus be expressed in the form

2
1({9prp 5. _19PD , 1 OPM 2 0By )
Q<8x >o ° P dx P ox PD
there follows It
o =
oB 2
SIS I (a21)
by pb

The scale reduction in equation (A21) agrees with that in reference 2
(where UBuz/pb is called h2(0)/7) with the difference that b,

instead of b 1is used in UBug/pb in the reference; this means that
an additional linearization i1s contained in reference 2. (In ref. 2

he(O)/y is somewhat differently defined, but in ref. 3 it is the same
as in the present paper.)

The pressure gradient (apD/Bx)O/p of the nonmagnetic flow is thus
split under action of the magnetic force into a gradient apD/Bx = -b2x
due to scale reduction of the nonmagnetic flow and a gradient (BpM/Bx)/p
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that balances a scale-reduced magnetic force to maintain the new veloc-
ity distribution at the reduced scale. The effect on the shear is thus
also split into two parts. One is a reduction due to the nonmagnetic
scale-reduction effect of the stagnation flow. The other (as is clear
from the discussion of the flat-plate case) is a shear increase at the
scale-reduced velocity distribution. Although, according to equa-

tion (A18), the reduction in pressure gradient due to scale reduction

Spp) _ 9pPp _ 9Py
ox ° ox ox

equals the favorable pressure gradient BpM/BX that maintains the con-

stant velocity distribution (at reduced scale), the shear increase due

to this pressure gradient will have to be smaller than that due to scale
reduction. The reason is, as noted before, that the shear increase due
to the magnetic pressure gradient at constant veloecity distribution is
smaller than that due to the corresponding favorable pressure gradient.
This fact is strongly in evidence in the numerical results of reference 2.

Similar arguments can be made for the reduction in heat-transfer
rate, which consists of one part based on a nonmagnetic scale reduction
of the stagnation flow and a smaller increase corresponding to the
increase in skin friction at reduced velocities. The basic results for
the deviation from Reynolds analogy (ref. 14} for flows with pressure
gradients apply with proper modifications.

For stagnation flow, when the original velocity distribution is
maintained in the potential outside flow the pressure gradient (BQD/BX)O

is also maintained (in contrast to the combined pressure gradient
a(pD + pM)/éx). As a result, according to equations (Al), (A2), and (A3),

the magnetic force mjup will have to be balanced by the pressure gra-
dient Blebx. The resulting shear increase is now not reduced by a scale

reduction as was the case for the unchanged pressure gradient. In the
actual case, however, the tendencies toward constant pressure distribu-
tion should predominate.

It may be of interest to note that in the calculations of refer-
ence 6, where the proper boundary conditions at the shock are used, the
effect of the magnetic force on the pressure gradient near the stagna-
tion point may be a small decrease, a small increase, or no change.
These small variations were taken as supporting evidence in the present
paper that the pressure gradient is essentially maintained. The case
in which the pressure gradient 1s reduced by the magnetic force with a
resulting local drag increase has so far not been mentioned, but it can
be readily constructed by starting with equation (A18) and assuming that



Y]

' Spp , OPm
the sum of the pressure gradients = + e is smaller than the origi-
. X X

nal pressure gradient (BpD/8x> . Finally, it should be noted that the
o)

possibility of a pressure-difference increase near the stagnation point
implied by calculations in reference 6 suggests a small local drag
decrease due to the magnetic force. In principle, a local drag decrease
is not impossible since the magnetic effects are similar to frictiocnal
or throttling actions. Of course, in a transonic flow such as that
around a blunt-nosed body, a local drag decrease does not mean that the
total drag decreases; as a matter of fact, local considerations offer
very incomplete information concerning the drag.
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